
Last Modified: 24-MAY-96
+---mh<DoH!>-+
| M______. A______. C______. H____. A______. C______. K____. |
|) :\) :\) :\) / /\) :\) :\) / /\/\ |
| / :\/ /\ :\/ /__/_ / /__\:\/ /\ :\/ /__/_/ /_/ / |
|/ / \ :\ / \ :\ _\ :\ / ____ :\ / \ :\ _\ :\ .__. :\ |
|_____/______\ ____________/ ___\ /______\ _______________\ ___\|
+--------------------------------------S.ssSS88$$s----S-S----,ssSS88$$8s-----+
 Contributors: AX1P, Filbert, S8 '"~$$~ S8 8S 8$$8S"~~~$8S
 Observer, Maddog Hoek, oleBuzzard, S8 S8 8S S8$$ ~8S
 Armchair Hacker, ArcAngel, Nganon S8$.ssSS88$$s S8$ $8S S8$$ $8S
 DATE -=> 04-MARCH-1996 S8$ '"~$$~ S8$.sss.$8S S8$ $8S
 ______kn0wledge phreak BBS______ S8$$ S8$$'"~"'$$8S S8$ $$8S
 New home of MHFAQ 719.578.8288 S8$$ S8$$ $$8S S8s $ $$8S
 WebSite: http://iti2.net/k0p S8$$$ S8$$$ ver $$$8S S8s $$ s$$$8
 e-mail: k0p@iti2.net ~$~ ~$~ 2.0 ~$~ ~S8$$$Ss~$~
==$$$
$====

00. Introduction to the MacHackFAQ v2.0

SECTION I: SOFTWARE DEPROTECTION/'CRACKING'

01. What is MACSBUG?
02. Where can I find MacsBug?
03. How do you use MacsBug?
04. How can I use MacsBug to crack software?
05. What are some other useful MacsBug related resources?

SECTION II: SYSTEMS HACKING

06. What are some general techniques for defeating Macintosh Security?
07. What are some general tools for defeating Macintosh Security?
08. How can I Hack At Ease?
09. How can I use DisEase to Hack At Ease?
10. Where can I find DisEase?
11. How can I Hack FoolProof?
12. How do I access the Chooser when it is protected on Foolproof?
13. How can I defeat Passworded Control Panels?
14. How can I defeat the DeskTracy Control Panel (at Kinko's)?
15. What is EtherNet or Packet Sniffing?
16. How can I EtherNet Sniff on the Mac?
17. How can I defeat a FileGuard protected system?

SECTION III: SYSTEMS HACKING

18. How Can I hack FirstClass?
19. What is UNIX Password Hacking?

20. How Can I do it on the Mac?

SECTION IV: PHREAKING

21. What is phreaking?
22. What are some phreaking warez for Macs?
23. How can I use these programs?

SECTION V: MAC UNDERGROUND RESOURCES

24. What are some Sites of interest to Mac Hackers?
25. What are some Warez of Interest to Mac Hackers?

SECTION VI: MAC HACK TIDBITS

26. How do I copy a read-only file?
27. Where can I get the latest version of macpgp and the source code?
28. How can I convert a Read Only text file?
29. How can I Disable Extension Disabling on my Mac?
30. Is there a way to disable the Power-down Button
31. Is there a way to turn off zoomrects in System 7?

32. Outro

==
===

00. Introduction to the MacHackFAQ v2.0

Welcome to the MacHackFAQ v2.0! This thing has been awhile in the making, but
I think I've revamped it to a level that I can work with. I'd like to be able
to put out new FAQs at least every three months, the greatest determinor of
that will be the volume of article submissions. To start this FAQ off, heres
some House Cleaning issues:

Contributors--Contributors this month are: Observer, Maddog Hoek, Voyager,
ArcAngel, AX1P, Spooty, Filbert, The Jackal, Mark O'Connel, Nganon, me
(oleBuzzard). Thanx to everyone who contributed. My apologies to anyone who
contributed that I failed to acknowledge.

MacHack FAQ Header--This additions Header was created by Maddog Hoek. If you
are an ASCII artist, and would like to submit a Header for upcoming FAQs
please contact me.

Home of the FAQ--An html versions of the FAQ can be found at kn0wledge phreak
WWW page. Text versions of MacHack FAQ can be found at kn0wledge phreak WWW
page or kn0wledge phreak BBS

Submissions, Corrections, Praises, Complaints, Suggestions--If you want to
contact me regarding any of the following, please feel free to e-mail me.
Please label your subject as one of the five subjects.

Addresses--I kept saying you could contact me, I supposed you'd like to know
where.

oleBuzzard's E-mail Address: k0p@iti2.net
 kn0wledge Phreak WWW Page: http://iti2.net/k0p
 kn0wledge phreak BBS: 719-578-8288

SECTION I: SOFTWARE DEPROTECTION/'CRACKING'

01. What is MACSBUG?

MacsBug is an acronym for Motorola advanced computer systems deBugger. It is
an assembly-language-level debugging tool for the Macintosh and Power
Macintosh computers. MacsBug was written by Motorola (creator of the 68000
series chip) to aid programmer's in development of Macintosh software. The
versatility of MacsBug also makes it a very useful tool for software
deprotection.

02. Where can I find MacsBug?

MacsBug can be found at the Apple Corporation FTP Support Site:

http://www.support.apple.com/pub/Apple%20SW%20Updates/US/Macintosh/Utilities

03. How do you use MacsBug?

The answer comes from Observer in an Original piece written for the FAQ:

Macsbug for Fun and Profit
Macsbug is an awesome program published by Apple and available for free. It's
used by programmers to debug their programs, and crackers to help them in
their work. Macsbug (MB) is what's called a "low-level debugger." This is
because it works at a very low level--in other words, looking at the actual
instructions being executed by the computer. Currently, the latest version of
MB is 6.5.2.

Installing Macsbug is easy. Drop it in your System Folder and restart. Don't
double click on it, don't put it in the Extensions folder, don't try to give
it more memory--just put it in the System Folder and let it be. The next time
you restart, the message "Debugger installed" will accompany your normal
Welcome to Macintosh message. This confirms that Macsbug is loaded.

To stop processing and enter Macsbug (called breaking into Macsbug), press
the interrupt button on your Mac. This is a small button with a circle on it.
Inside the circle is a little squiggly line that looks sort of like an EKG
(sometimes it's just a circle, though). It will often be accompanied by an
adjacent small button with a triangle in it. This is the reset button.

Anyway, press the interrupt button, and Macsbug will appear. If your computer
is one of those without hardware reset/interrupt buttons, press cmd-power.
(cmd-ctrl-power is the equivalent of the reset button.)

Macsbug makes you look very cool when you use it. This is because it looks
like sheer hell to anyone who doesn't know how to interpret what it gives
you. What does it give you? Here's an ASCII picture of a MB screen: (view in
Monaco)

SP		
nnnnnn		
CurApName		
SimpleText		
32-bit RM	[previously executed	
SR SmxNZvc	instructions, plus	
	output generated by	
D0 nnnnnn	your commands, show up	
[...]	here]	
D6 nnnnnn		
D7 nnnnnn		
	__	
	[proc name] ; will branch	
A0 nnnnnn	+nnnn nnnnnn BCC.S	641A
[...]	+nnnn nnnnnn * MOVE.L	2008
A7 nnnnnn	+nnnn nnnnnn CLR.W	4267
____________	_____________________________________	______________

Whoa! What the HELL is all this stuff? (And who in the world uses it?)
Basically, unless you're using assembly language on the Mac (as a programmer
or cracker, for example), you don't need to know what all this stuff means.
For the benefit of those who care, however, here you go. (Other people, skip
down to the next section.)

SP
Stack Pointer. Not too important except for programmers/crackers.

CurApName
The name of the currently running application. This is NOT (NOT NOT
NOT)not the frontmost application! Many times it will not be. To ensure
that an application will be running when you break into macsbug, hold down

one of its menus.

32-bit RM
Indicates whether you are in 32 or 24 bit memory mode (on any modern Mac will
always be 32)fairly and whether you're using Real Memory or Virtual
Memory.

D0-D7, A0-A7: Data and address registers on the 680x0 chip, where data is
sometimes stored.

[proc name]
The name of the subprogram which is being executed, or "no procedure name" if
none is available. If ResEdit/Resorcerer tell you the name of a subprogram is
something line "<Anon_17>," MB just says "no procedure name."

; will branch
If the next instruction to be executed (the instruction directly below the
procedure name) is a branch, this will pop up and say whether or not the
branch will occur.

+nnnn
The offset within the current procedure of the instruction on that line.

nnnnnn
The absolute address in memory of the instruction on that line.

*
Shows up if there's a breakpoint set on an instruction. Unless you're setting
breakpoints, you won't get any of these.

BCC.S, MOVE.L, etc.
The next assembly instructions which will be executed.

641A, 2008, etc.
The hex equivalent of these instructions.

And that's about it. There are lots of worthwhile things you can do in
Macsbug without understanding all this stuff, though.

es
Exit to Shell. Attempts to quit the current program and go back to the
finder. If you crash and use this, it's best to restart the computer ASAP.

rs
ReStart. Useful if you crash and can't use es, but don't want to do a
hardware restart. Better than turning the computer off, because it unmounts
mounted volumes.

rb
ReBoot. Same as rs, but doesn't unmount mounted volumes. This makes it more
or less the same as turning the computer off and then back on, or hitting a
hardware reset button.

help <topic | command>
Displays help for the specified topic or command. To see a list of topics,
just type "help".

Base 10 <-> Base 16 (hex) <-> ASCII conversion
Enter a number preceded by # for decimal, $ for hex, or in single quotes
(i.e. 'q') for ASCII. Hit return. What pops up is the hex, decimal and ASCII
equivalent! Nifty, eh?

Error ID lookup
Crashed and want to know just what an error -43 is? Break into Macsbug and
type:

error #(error ID in base 10)

and Macsbug will tell you what the error means.

A calculator!
Macsbug can perform mathematical operations, such as *, +, -, /, even between
number systems!

You can also do some fun stuff with Macsbug:

sw menuflash [hexadecimal number 1-FFFF]
Sets the number of times a menu item flashes when selected. If you set this
over 50 or so, be prepared to be very patient!

Strobe light
Type "swap". Macsbug will say "Display will be swapped after each trace or
step." Now type "s 20" and hit return. Ooooh!! Aaaah!! Make the number bigger
if you like, but be patient... Type swap again to end the process.

And in case it ever comes up in Trivial Pursuit:
The name Macsbug has nothing to do with Macs. It is an acronym for Motorola
Advanced Computing Systems deBUGger. If Apple had called their computers
Donuts, Macsbug would still be called Macsbug. (Motorola comes in, for those
who don't know, because Motorola makes the 680x0 chips which were the heart
of every Mac until the PowerPC, which is still made by Motorola.)

For Andy Ihnatko's typically unique spin (I mean that kindly, Andy) on
Macsbug, check out the last page of the Feb 96 MacUser. If you're a Mac
programmer and want to know how to use Macsbug to examine your programs,
check out _Debugging Macintosh Software with Macsbug_, by Othmer and Straus.

For information on how to use Macsbug itself, Apple publishes a manual which
costs about $30.

04. How can I use MacsBug to crack software?

"How do I get blahblahware to stop asking me to register?"
(Also known as, "Will someone give me a crack to blahblahware?")

Intro...
Cracking software is a huge topic--not always difficult, but one with many
different aspects, all of which can be important. This is just the first step
down a long road, and I urge anyone interested in truly learning about
cracking to check out the "Further Reading" section at the bottom. Also, the
first two appendixes (glossary and assembly reference) aren't meant as
afterthoughts but as important parts of the text. Use them. Appendix 3 is
useful if you want Resorcerer (which you do).

Background...
Anyone who's written a few real Mac applications (or one big one) in Pascal,
C, or any similar language is a good candidate to become a Mac cracker.
However far down from there you rank yourself, is how much harder it's going
to be for you to crack software. Try if you like, but knowing how to program
is useful if you want to modify programs.

If you're freaked out about assembly language, don't be; a decent programmer
in Pascal or C can acquire a fluency in assembly fairly easily. All your
friends from the Toolbox exist in assembly, just with an underscore ("_")
before their names. And we call them traps, rather than calls. But other than
that they're pretty much the same. And lots of cracking is just changing
branches, like changing conditions in an "if" statement. Nothing too hairy,
right?

People generally write programs in what's called a high-level language, a
language that's far from what the computer actually does but is easy for a
human to remember and work with. HyperTalk is a very high-level language.
Pascal and C are another notch or two down the line. In order for the
computer to run programs written in these high-level languages, you need a
compiler. This is a program which translates what you've written in Pascal
(gibberish to the computer), into assembly language, the specific
instructions which the CPU will execute to run your program. So when you open
a program and look at its CODE resources, you're looking at some
representation of the actual instructions the computer follows to run that
program.

The Hunt...
Note I said some representation. If you're using ResEdit, all you'll see is
the code in hexadecimal. This doesn't do you much good. To view it as its
assembly code equivalent, either spring for Resorcerer (a $256 ResEdit done

right), or get the ResEdit CODE Editor, which is free and publicly available.
Once you install the resources in the CODE Editor into your ResEdit
application, when you open a CODE resource, you'll see something like this
(and also get some new menus):

Offset Addr Opcode Operand Comment
===

Here's what this all means:

Offset
The line number in bytes, counting from the beginning of the CODE
resource segment

Addr
The line number, counting from the beginning of the current
procedure/subprogram

Opcode
The assembly instruction to execute

Operand
Data which accompanies the instruction (parameters)

Comment
Misc. info on a line of code, plus hex representation of the line

All this exists in Resorcerer as well, just with slightly different names. To
toggle between viewing absolute and relative offsets in Resorcerer, press
cmd-2 while viewing a CODE resource.

Go to the "Modules" (Routines in Resorcerer) menu. There you'll find a list,
in the order they exist in the code, of all of the procedures in that code
segment. (Happy Resorcerer users will have this menu alphabetized.) Find a
program which has more than anon1, anon2, etc. Procedure names are a huge
help to a cracker, because let's say you want to remove a registration dialog
box--which catches your eye more, "DoRegDialog," or "anon36?"

So you have your program. Let's say what's annoying you is that it always
shows a dialog which you can't dismiss for a few seconds, until it enables
the OK button.

Go look at the program's DLOG resources and find the dialog you want to
avoid. If it isn't there, check out the WIND resources as well. Convert the
dialog/window's ID number into hex. If you can't do this manually, Resorcerer
can do it for you, or else find one of the many shareware calculators that
has the capability. Also, TI-85 owners can just punch go into the mode
settings and set it to use hex. Never thought that thing would come in handy,

did you?

Anyway. Search for this value in the code, just a few lines before a call to
the _GetNewDialog trap. (Cmd-G in Resorcerer, or hold down option when
opening the CODE resource in ResEdit and use ResEdit's search tools.) Here's
a sample from an actual application, whose nag dialog is DLOG ID #9990=$2706:

move.w #$2706,-(sp)
clr.l -(sp)
pea -$0001
_GetNewDialog

What's this doing? It's MOVEing the hex number $2706 to "sp." This is the
Stack Pointer, a place where things are stored temporarily--typically
parameters passed to a procedure or function, and afterwards what it returns.
Sure enough, the next line is:
movea.l (sp)+,a4

This is where we move the DialogPtr given to us by _GetNewDialog, off of the
stack pointer and put its address in register A4. (We know GetNewDialog
returns a DialogPtr because we bought the Inside Mac CD while we were doing
Mac programming in a high-level language. I wasn't kidding when I said Mac
programming experience would help.)

The Kill...
OK, so now we know where the dialog is loaded. And, because we've used
dialogs in a higher-level language before, we know that other toolbox
calls--ModalDialog and CloseDialog for example--tend to accompany a
GetNewDialog call. Further, the problem we wish to overcome is that it stops
for a few seconds before enabling the OK button. This implicates another
likely accomplice, HiliteControl, which is used to enable and disable dialog
items.

Let's say the programmer was a jerk and left the subprogram names in the
code. Maybe the subprogram you found the dialog in is called "DoNagBox." If
it's this obvious, you could try NOP'ing the entire DoNagBox subprogram. Note
that while this is easy in Resorcerer, it is very difficult in ResEdit.

Maybe that doesn't work. Maybe that makes the program crash. OK, time to try
something else. While the nag box is open, break into Macsbug (read about
that in another section of the FAQ) and type "atb closedialog". This will
cause Macsbug to interrupt processing when a call to the _CloseDialog trap is
made. Dismiss the nag dialog, and poof, you're in Macsbug. Use the "t"
command to step through the code, through the subprogram which holds the
_GetNewDialog for the nag box. When you hit an "rts," keep going--the next
line will be the line after the line which calls the nag subprogram. Here's a
little diagram:

 /-> doNagBox
 / [other assembly]
[assembly] / move.w $2706, -(sp)
 / _GetNewDialog
jsr doNagBox / [more assembly]

[more assembly]<---\ _CloseDialog
 \ [still more assembly]
 \-rts

We reach "jsr doNagBox," which sends us off to the doNagBox subprogram. This
puts up a dialog and then closes it when we hit a button. When all this has
been done, we're returned to the line of code immediately following the "jsr
doNagBox" line. Just like any other language.

We could NOP the "jsr doNagBox," but that tends to be asking for trouble; any
parameters passed to or received from the subprogram are left wandering
around, which will probably cause a crash. What we should look for are
branches, probably beq or bne. Is there one of these above the jsr which
skips down just a few lines past the jsr? If so, try changing the condition
of this branch (such as beq->bra).

Other Techniques
The idea of looking for a dialog's ID is one which frequently works. However,
there are other limitations you might want to overcome. Here are some ideas
for other program limitations:
Only works for x minutes, then quits
Look for the _TickCount trap (hex A975) in the code--this is the most common
method of doing this. Something else to watch for is _ExitToShell, (hex
A9F4), which MAY be the way the program quits itself. If the subprogram names
are in the code, look especially hard at anything resembling "eventloop,"
"mainloop," etc.

Only works for a week
Look for the _SecondsToDate (hex A9C6) trap, and a branch a while after it.
Also, if a dialog pops up to tell you to register, look for the ID of this
dialog.

Only lets you play the first x levels
Several possibilities here. If a dialog appears when you reach a higher
level, the easiest is to search for the dialog ID in the code. If it quits,
look for _ExitToShell. If you absolutely can't find what you're looking for,
search for the highest possible level number in the code. (If you can only
play levels 1-4, search for $0004.) If this shows up in or near some form of
cmp, you may have struck paydirt.

Practice, Practice, Practice
With just a few months of practice, you'll be surprised at how many things

you can crack in less than an hour. Here are some things you can try looking
at, in order of difficulty: (easiest->hardest)
Relax 1.0 (any shareware site)
GraphicConverter 1.7.7 /1 (ditto)
Warcraft 1.0
Net Watchman demo (ftp.aggroup.com) (don't worry about printing)
GopherGolf 2.0.7 (shareware again)
DragStrip 1.2.4

(Note: Some of these are commercial software. These cracks should only be
attempted on software you own, and for your own convenience.)

Appendix 1: Glossary
Branch:
Each command in assembly has an offset, essentially a line number. Branching
to an offset sets the PC to the specified offset and then continues execution
normally.

Byte, word, long word:
The most common data sizes. Use monaco for the table below:
 Bits Hex digits Range (decimal)
Byte | 8 2 0-255
Word | 16 4 0-65535
LWord | 32 8 0-4294967295

These can be halved to alter the range to include negative values. So a byte
can also be used to go from #-127 to #127, a word from #-32767 to #32767, and
so on. In a long word (for example) this is accomplished by going from $0 to
$7FFF (#0-#32767) normally. $8000 is then equal to #-32767, up to $FFFF=#-1.
The same system is used for the other data sizes as well.

Flags:
There are five status flags: Z, C, N, V, X. These keep track of the results
of operations. Conditional branches such as bne and beq check the flags to
decide whether or not to branch.
Z: Zero flag. Set if the result of an operation is zero, or if two compared
values are equal. Cleared otherwise.
C: Carry flag. Set if the a math operation produced a digit carry (i.e.
$FF+$1)
N: Negative flag. Set if the result of a math operation is negative, or the
most significant (rightmost) bit in a number is true.
V: Overflow flag. Set if an operation's result can't be held in the data
provided (such as $FF+$1 in a byte). Not too common.
X: Extended flag. Used for precision in math operations. Also not too common.

Hexadecimal:
Usually referred to as hex. This is base 16. Our number system is base 10
(aka decimal), which means each column is ten times the previous one. In hex,

you start with the ones column, then you have a sixteens column, then a 256's
column, and so on. Hex is just like our normal system, except you count to 15
before going to the next place. The extra 6 numbers you need for this are
provided by the letters A-F. So counting in hex goes like this:
1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10,11,12,13,14,15,16,17,18,19,1A,1B,1C,1D,1E,1F,
20,21...
 The signs # and $ are used to indicate decimal (base 10) and hexadecimal,
respectively. So #10=$A; (#15+#1)=($F+$1)=$10; #255=$FF; and so on.
Two hexadecimal digits are equivalent to eight bits, or one byte.

Registers:
680x0 chips have 16 registers, which are places to hold data (essentially a
variable in higher-level languages). These are divided into 8 data registers,
labeled D0-D7, and 8 address registers, labeled A0-A7. Each register can hold
a long word. The address and data registers are themselves identical, but
there are commands which can be used on address registers which cannot be
used on data registers.

Subprogram/Subroutine/Procedure/Function:
Used more or less interchangeably. If used specifically, they mean the same
thing they would in a high-level language.

Appendix 2: Quick Assembly Instruction Reference
This is a brief description of the most common commands in assembly language.
There are many others however, and anyone seriously wanting to learn how to
crack will soon need more than this. See the "further reading" section for
suggestions.
Suffixes: .b, .w, .l
Indicates that the suffixed instruction will apply to a Byte, Word, or Long
word, respectively. So cmp.b will compare two bytes.

add
ADDs two values, and stores the result in the second operand. The Z flag is
set if the result was zero, cleared otherwise.

beq
Branch if EQual. Branches if Z flag is set. 67 hex.

bne
Branch if Not Equal. Branch if the Z flag is clear. 66 hex.

bra
BRanch Always. Move PC to the indicated offset and continue. 60 hex.

clr
CLeaR. Sets its operand to zero.

cmp

CoMPares two values. If the values are equal then the Z flag is set.
Otherwise it is cleared.

jsr/rts
Jump SubRoutine. Exactly like calling a procedure or function in a high-level
language: sets PC to the subprogram's address, but first puts the PC's
current value on the stack. When the specified subprogram is completed, the
rts ("ReTurn from Subroutine") command will be used to return to where the
subprogram was called.

link/unlk
LINK/UNLinK. Generally used to create local variables for subprograms. (Link
creates, unlink disposes at end of subprogram.)

move
MOVEs the first operand into the second. When you see something like (A2), it
means that the data stored in the address held in A2 is being used. A2
without the parentheses means the actual data held in A2.

nop
No OPeration. Useful for simply deleting code without changing the location
in memory of other code. 4E71 hex.

sub
SUBtract. Same as add, but subtracts the first operand from the second.

Appendix 3: Ordering Resorcerer, a cracker's best friend
The single-copy price of Resorcerer is US $256 (decimal!). We also offer
quantity, reseller, and educational discounts at anywhere between 20% and 50%
off of the above price. Please call us for more information and a quote.

Our mailing address is:
Mathemaesthetics, Inc.
P.O. Box 298
Boulder, CO, 80306-0298
Phone: (303) 440-0707
Fax: (303) 440-0504

Internet: resorcerer@aol.com

Appendix 4: FURTHER READING
Surprise surprise, a few pages aren't enough to teach you assembly language.
For more information, check out these sources...
Files by The Shepherd and Vassal
Each of these guys has written a much bigger file on Mac cracking. The
Shepherd's is the larger one and better for the beginner (and a great file in
general), Vassal's offers more specific technique tips. I used the Shepherd's
file as a reference for the assembly reference section here.

Basic MacCracking files
I've written a few files which describe how to crack specific programs. Of
course I'm biased, but I think these are all very helpful to beginners,
especially since they were written as I learned things myself.

Fantasm's help files
Fantasm is an assembly language development program, for the sickos who
actually create whole programs in assembly language. While using the program
itself has been shown to cause severe social problems, it comes with six
large files written to teach someone how to write assembly language. These
aren't something anyone serious about this stuff should pass up.

Debugging Macintosh Software with Macsbug
Macsbug in invaluable to a cracker. I would be shot if I took the space to
describe how to use it here, but it's not that hard to figure out. What is
hard is discovering how to use it in the context of a Macintosh (i.e. where
is the event record that _waitnextevent just got?), and this book tells you
all of that.

Macsbug Reference and Debugging Guide
Apple's Macsbug documentation, plus EXCELLENT assembly tutorial. Another one
serious folks shouldn't miss out on.

05. What are some other useful MacsBug related resources?

DBugr 1.2.1...........Puts a floating bomb on your desktop that you can click

 on at any time to enter macs bug. Widely available.
 http://vsl.cnet.com Search: 'macsbug'

Break Before..........Break into MacsBug on the very first instruction of the

 INIT code of ANY extension you choose. Widely
available.
 http://vsl.cnet.com Search 'macsbug'

Debugger F-Key........Drop into the debugger. Recognizes MacsBug, TMON, The
 Debugger, and ABZmon. Will also recognize any new
 debuggers that follow Apple's debugger protocol as
 documented in the "MacsBug Reference and Debugging
 Guide." http://vsl.cnet.com Search 'macsbug'

Cool MacsBug Tricks...Cool things you can do with MacsBug.
 http://www.biddeford.com/~benyc/Macsbug.html

Tips for MacsBug......Place to obtain and submit MacsBug programming tips.
 http://www.scruznet.com/~crawford/Computers/macsbug.html

SECTION II: SYSTEMS HACKING

06. What are some general techniques for defeating Macintosh Security?

Here are a few:

 * Restart a system with the Shift-key down to disable extensions.
 * Restart with the built-in ROM Disk available on some Macs. Hold:
 Command-Option-x-o during boot-up.
 * Boot from a floppy. Even if floppy startup has been disabled, you should
 be able to force it by holding down the command-option-shift-delete key
 combo to boot the floppy. This key combo won't let the internal hard
 drive mount.

07. What are some general tools for defeating Macintosh Security?

MUST HAVES for defeating Secured Macs are Keystroke Recorders, file wipers
and the System 7.5 Disk Tools.

Keystroke Recorders--Keystroke Recorders are normally Control Panels, which
when activated, will record every keystroke made on a system. In many cases
the log containing all of the Keystroks is stored in a covert place for later
retreival. A few keystroke recorders are:

 Invisible Oasis.......http://wheel.dcn.davis.ca.us/~sean/hack/hack.html
 MacLife Insurance.....http://vsl.cnet.com Search: 'maclifeinsurance'
 SuperSave 1.x.........http://vsl.cnet.com Search: 'super save'

File Wipers--File wipers are utilities that can remove a file from a Hard
Disks by physically writing over it. Many files are protected against
deletion by the prevention of routines which allow their altering. File
wipers can circumvent this protection because they don't perform the routines
involved in altering a file, instead they just write over the file with null
data. As a result the file is eliminated and thereby rendered NON-FUNCTIONAL.
This makes them a very valuable in defeating Macintosh security. File wipers
have the ability to wipe: locked file, protected files, running programs, the
system folder, themselves, anything. A few file wipers are:

 Burn 2.2.............http://vsl.cnet.com Search: 'Burn'
 Flame File v1.5.8....http://vsl.cnet.com Search: 'flamefile'
 Obliterate v1.1......http://vsl.cnet.com Search: 'Obliterate'
 The Eraser 2.0.0.....ftp://ftp.euro.net/Mac/info-mac/disk/eraser-20.hqx

System 7.5 Disk Tools--System 7.5 Disk Tools contains a Finder and
Mini-System on a single 1.44 HD Floppy thereby alllowing you to boot from the

Floppy Drive. The 7.5 Disk Tools are a part of the System 7.5.

08. How can I Hack At Ease?

There are numerous ways to Hack At Ease. Here are a Few:

Programmer's Switch--Hit the programmer's switch (see section on MacsBug) and
type: G FINDER. This should break you out of At Ease and leave you in the
Finder. Once you're in in the the Finder you've pretty much hacked the
protection. If you want to polish the hack (cover your tracks, find
passwords, etc.) here's some advanced steps you can take:

 * If you know that your sysadmin keeps logs Copy the system folder to
 the hard drive. Rename the original system folder. Reboot without At
 Ease. When you are done, put the real system folder back and delete
 the second one.

 * If you aren't concerned about logs, just move the At Ease Preferences
 out of the System Folder: Extensions folder and reboot. Remember to
 put them back when you are done.

 * Install one of the aforementioned Keystroke recorders. Wait a few days
 and check the logs from the recorder. You should have the
 administrator password!

Crashing the System--Another Hack for At Ease lies in Crashing the system
it's running on. Just keep opening applications until all the RAM is
consumed. On older versions of At Ease, a dialogue box will appear that
asking you if you would like to quit At Ease to free up RAM. Click yes!

Null Password--Open the file System Folder:At Ease:At Ease Preferences with
MSWord or any ther text editor. Look for the string "MFDR\]". Delete
everything between "\" and "]". Save the changes and you have a null
password. Now you can go to At Ease Setup and change the password to whatever
you want!

OEM Hack---The following directions are excerpted from the At Ease
Administration Manual from the Section: 'What do I do if I forget my
Administrator Password?'

 If you forget the At Ease administrator's password, follow the
 directions below instead of those in the manual. If your startup disk is
 locked, you'll first need to run the Unlock application on the AT Ease
 2.0 Utilities disk to unlock the start-up disk. Consult the manual for
 information about the Unlock application.

 1. Start up your computer from another startup disk.
 2. Open the System Folder of your usual startup disk.

 3. Open the At Ease Items folder inside your System Folder.
 4. Drag the At Ease Preferences file into the trash.
 5. Hold down the Option key while you choose Empty Trash from the
 Special menu.
 6. Restart from your usual startup disk.
 7. Open the At Ease Setup for Workgroups application.

 Note: If you are using an AppleShare server volume as the At Ease disk,
 your setups may not appear until you reset the At Ease disk to
 this server volume.

 8. Reconnect to the server volume and use the At Ease Disk command to
 reselect the volume.

 Note: Make sure you use the information on the server instead of
 replacing it with the information on the startup disk.

 9. Add a new password and clue.
 10. Make sure the following options set correctly:

 * Allow Remote Administration checkbox
 * Lock Startup Volume checkbox

 11. Turn At Ease back on.
 12. Quit At Ease Setup for Workgroups."

09. How can I use DisEase to Hack At Ease?

DisEase is a fairly powerful utility for Hacking At Ease. It allows you to
manipulate At Ease, break out of At Ease, decode passwords, any number of
things that would render At Ease useless. The only problem is on most At Ease
protected system you are prevented from finder or floppy disk access, thereby
preventing you the ability to run DisEase in the first place. In these
situations, follow the above steps for breaking into the Finder, you can then
access DisEase and use it to decode the Administrator password.

10. Where can I find DisEase?

DisEase 1.0.......ftp://ftp.eskimo.com/u/a/adrenal/mac/DisEase.hqx
DisEase 3.0.......http://www.tyrell.net/~ibs/Hackr/Cracking/DisEase3.0.sit.hqx

Also you can contact the Author. macpants@aol.com

11. How can I Hack FoolProof?

FoolProof is Macintosh security scheme that uses driver level and Systems
Folder protection to prevent against bypassing. Driver Level protection is
protection written to the Driver Level of the Hard Disk. At this level, the

drive can not be mounted without envoking the protection. This condition will
continue to exist as long as the Driver remains intact. Here are some methods
of defeating it.:

IMPORTANT NOTE--The FoolProof extension, among other things, intercepts the
Restart & Shutdown calls from the System and makes sure to disable any
external boot device whenever a Restart or Shutdown is called. To defeat
this, when you Restart YOU HAVE TO DO HARD RESTARTS (ctrl-opt-del). When you
do hard Restarts no calls are made to the System, and the System is restarted
without locking or protecting anything. So be sure to do HARD RESTARTS when
hacking FoolProof.

Floppy Boot--As detailed in the beginning of this section, Boot from a floppy
with command-option-shift-delete held down. This will prevent the Protected
Driver from loading. Once the System is loaded you may need to use a Disk
mounting utility to Mount the Hard Drive. Once the drive is mounted, Move the
FoolProof Extensions and Prefs out of the System folder and Restart.
FoolProof should be disabled.

<>
--
Transfer interrupted!

